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Abstract—With an increase in number of surveillance cameras installed in the public, it has become a more difficult mission for the
authorities to constantly monitor the screen. To solve this issue, we present a "Crime Analysis Model” which is able to classify 10
different types of crime efficiently using the convolutional neural network (CNN) given any surveillance video footage as its input.

We have utilized two separate deep learning models within the Crime Analysis model, namely (1) anomaly detector (2) crime classifier
(which is trained based on the human-action recognition). The Crime Analysis model takes any form of surveillance video footage as its
input. The input first gets passed to the Anomaly Detector which helps to distinguish time frames at which anomalies occur. The
corresponding time frames at which the anomalies occur gets passed to the crime classifier. The change of position of the skeletons
within the video are analyzed and the model outputs one of the following crime categories: (1) Abuse (2) Arson (3) Assault (4) Burglary
(5) Fighting (6) Robbery (7) Shooting (8) Shoplifting (9) Stealing (10) Vandalism

Index Terms—Convolutional Neural Network, Anomaly Detection, Human-action Recognition, Crime Classification

1 INTRODUCTION
1.1 Background

With an increasing number of surveillance cameras installed in
public and private places, it has become a more challenging task
for the authorities to constantly monitor all the cameras. With
such a vast amount of data, it would be a better choice to let
the computers do the monitoring process. The purpose of the
project is to create a deep learning model which could self-monitor
all the surveillance videos and alert the user of any anomalies.
Furthermore, the model has the capability to further classify the
anomaly detected into either one of 10 different crime categories.

There are two functions within the Crime Analysis model: (1)
Anomaly Detection and (2) Crime Classifier. Each functionality
is a separate model and is a huge research topic by itself.
For the Anomaly Detection, there have been many approaches
to increasing the AUC (Area Under the Curve) Score, which
tells about the accuracy in detecting anomalies. For the Crime
Classification, many projects were developed to predict potential
crimes that might take place.

Nonetheless, there have been close to no attempts to combine
the two models to detect crimes better and faster. We have
taken a noble approach in combining the two models, hoping the
combination of the two would bring a more efficient result in crime
detection and classification.

1.2 Anomaly Detector

Anomaly Detector is a CNN used for detecting anomalies that
are present in the input videos. Given an video input, it produces
an anomaly score at each time in millisecond. The anomaly score
varies between O to 1, 0 being an absolute normal case and 1 being
an absolute abnormal case.

The main role of the anomaly detector is to preprocess the
video for the next model, which is the crime classifier. We do
not want the crime classifier to go over the video of entire length
and constantly predict the crime that is taking place at the scene.
Instead, we would like to only pass the time frames at which the
anomaly detector thinks that has a high chance of crime taking

place. This would reduce the amount of processing for the crime
classifier.
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Fig. 1: Example of anomaly score generated by the anomaly
detector [1]. The X-axis is the time in milliseconds. The Y-axis
is the anomaly score ranging between O to 1.

For our crime analysis model, we have decided to use pre-
existing anomaly detector. We used the model from “Real-world
Anomaly Detection in Surveillance Videos” [2], which was pre-
sented in Computer Vision and Pattern Recognition Conference
(CVPR) from 2018 [3].

1.3 Crime Classifier

We now have the information regarding the time frames at which
the anomalies occur. It is our time to further analyze the video at
those time frames. To classify the type of crime, it is essential to
analyze the movements of human bodies. The best way would be
to take a look at the skeleton diagram of the people in the video
and see if any certain movements are associated with a certain
type of crime. This is where the Crime Classifier comes into play.

The Crime Classifier model is built based on the human-
action recognition model. The human-action recognition model is
capable of identifying the human body and applying the skeleton



Fig. 2: Skeleton diagram [4] - it contains 18 nodes (0-17). Each
node has a X-Y coordinate information

diagram. The X-Y positions of each node are extractable. Essen-
tially, the crime classifier model seeks for the change in those X-Y
position coordinates to check the trajectory of certain movements
and come up with the closest classification category.

1.4 UCF-Crime Dataset

The UCF-Crime dataset [5] is a collection of real-life surveillance
videos. The dataset contains 128 hours of videos and consists of
1900 long and untrimmed videos. There are 13 categories of crime
within the dataset: (1) Abuse (2) Arrest (3) Arson (4) Assault (5)
Road (6) Accident (7) Burglary (8) Explosion (9) Fighting (10)
Robbery (11) Shooting (12) Stealing (13) Shoplifting

There are lots of other datasets that are associated with crime
but many of them are acted in a fixed environment by the actors.
It may seem that the set is perfectly constructed and the actions
resemble real life; however, the lighting and the angles may be too
perfect compared to the real-life video footage. For instance, if the
crime is happening at night, there may not be enough lighting to
perfectly capture the movements. Another example would be the
existence of surrounding obstacles. The acting is set at a perfect
angle so that the skeleton would be easily constructed; However,
in reality, there may be obstacles that block the view of the human
body and this will bring difficulty in constructing the skeleton
diagrams. In short, those datasets minimize the real-life aspect thus
the deep learning model trained with them may not be the most
optimum for detecting and classifying real-life crime surveillance
inputs.

Both the anomaly detector and the crime classifier were trained
on the UCF-Crime dataset. Thus, we have made the effort to let
the model take into account real-life aspects — lighting, angle,
obstacles, etc. - as much as possible.

You might have noticed that we have mentioned previously
that our model produces a classification of 10 different types of
crime but the dataset contains 13 different types. This is because
we have removed “(5) Road (6) Accident (8) Explosion”. There
aren’t many scenes of the human body in those categories. Road,
for example, contains more vehicles in the scene than the human
body. For such reason, we have removed those 3 categories.

2 RELATED WORK
2.1

Anomaly detection has been a field of research by itself. Many
techniques have been built throughout the years to improve the
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accuracy in detecting anomalies. Here is the list of some of
the techniques: (1) C3D video feature extraction to identify the
characteristics in the video (2) weakly supervised learning where
instead of labelling frame by frame on where the anomaly is, the
model is trained with video that are known to contain anomaly
but not given specific location of the occurrence (3) Generative
Neural Networks (GNN) [0] to create new images and distinguish
between fake and real data. All the functionalities above have been
implemented as a part of the process for the anomaly detection
model.
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Fig. 3: List of anomaly detection models listed with highest
accuracy to the lowest. [7]

The current state of the art in anomaly detection is “Weakly
and Partially Supervised Learning Frameworks for Anomaly De-
tection” by Bruno Manuel Degardin [8]. It has the best measure
of accuracies. High accuracy means high AUC (Area Under the
Curve), high decidability and low EER (equal error rate). This
model utilizes all the techniques previously developed for anomaly
detection.

Our entire Crime Analysis Model was built with PyTorch,
while the above anomaly detector was built with TensorFlow.
Thus, we decided to use the second best model which is “Real-
world Anomaly Detection in Surveillance Videos”.

Many similar projects have been built to classify different
types of crime. Many projects utilized spatio-temporal data ap-
proach [9] in solving the classification problem. The dataset used
were CSV files which contained spatio-temporal information.
Many classifiers also used different dataset other than UCF-Crime
dataset. Some have utilized UBI-Fights [10] and there are many
other regional datasets — Crime in Vancouver [!1], Crime in
England and Wales [12], etc. In our model, we took CNN approach
in solving the classification problem, focusing heavily on tracking
the trajectory of the movements through human-action recognition
model.

3 METHOD
3.1 Anomaly Detector Implementation

Multiple Instance Learning (MIL) [13] approach is used to train
the Anomaly Detection Model. MIL is a technique used in
machine learning where we look at segments of the video first
and then make conclusion based on the results of the segments.
For better understanding, here are some important definitions.

For MIL, each data is split into multiple segments. Each
segment of the video is defined as an instance. The entire video is
made of the collection of all the instances and this is what we call
a bag. Therefore, simply put, instance is a video segment and bag
is a collection of the instances, which make an entire video.



Positive bag

Anomaly video

Bag instance (video segment)

Instance scores in positive bag

I"III

C3D feature extraction
for each video segment

/WEEEE”@ .

pre-trained 3D ConvNet

Dropout 60%

Dropout 60%

Dropout 60%

Normal video
Negative bag

MIL Ranking Loss with sparsity
and smoothness constraints

Instance scores in negative hag

Fig. 4: Anomaly Detector implementation method [2]. Both the anomalous (positive) and normal (negative) videos are segmented. The
segments for a bag and passed to the C3D feature extractor. The outputs from the extractor are passed to several Fully Connected layers
and anomaly scores are labeled for each segment. Compare the highest score from each bag and compute the difference for the MIL

ranking loss error. Repeat the process to minimize the error.

Now, let’s discuss why looking into segments of the video is
important. In the case of anomaly detection, let’s say you are given
an input video of robbery. Usually the surveillance video includes
the scene before the crime and after the crime. We do not know
exactly where the robbery is taking place. Therefore, to understand
specific time frame at which an anomaly seems to be taking place,
it is important to split the video into segments and look at them
one by one and then make a conclusion as a whole.

Now that we know the terminology, here is the process of
how the anomaly detection model is trained. There are two types
of videos that are fed into the model — the video with anomaly
(positive) and without, which is normal (negative). If there is
anomaly in the video, we call it positive. If the video scenes
are normal, we call it negative. The segments of each type of
video is put into a positive bag and a negative bag respectively.
The bag goes through C3D feature extraction process for each
segment. The result of the feature extractor goes through multiple
Fully Connected (FC) layers and anomaly scores are produced
for each segment. Now we have two bags (positive and negative)
with anomaly scores labeled for each segment. We compare the
segment with highest anomaly score from each bag and computer
the error. The is back-propagated within the model and the weights
are updated to reduce the error as much as possible.

After model is implemented, we input a surveillance video.
The model generates anomaly score plot with anomaly score vs
time in millisecond. We manually set a threshold telling that once
the model crosses this line, we will consider it as an anomaly.
We look at the time stamps where anomaly score goes beyond the
threshold. We record those time stamps and send the information
to the crime classifier.

3.2 Crime Classifier Implementation

The crime classifier is built based on the human-action recognition
model [14]. We have utilized two functionalities from this model
— pose estimation and people tracking. The pose estimation is
built with a library called Trtpose [15], which heavily depends on
TensorRT by NVDIA. TensorRT provides accelerated computation

B Anomaly Media Player - m] X

0.8
0.6
0.4

0.2 1 l l

0.0

T T T T T T
o] 5000 10000 15000 20000 25000 30000

T

Fig. 5: Ex: Anomaly Score vs time in ms. The blue line represents
the anomaly score and the red line represents the threshold. In our
implementation, we used threshold=0.2. Time stamps at which the
anomaly score crosses the threshold will be recorded and passed
on to the crime classifier for classification.

which increases accuracy of pose estimation and makes the predic-
tion faster. People tracking is made possible with a library called
“Yolov5+StrongSORT with OSNET” [16]. It utilizes YOLOVS for
object detection and StrongSORT for tracking the objects.

Pose estimation and people tracking are insufficient to build a
classifier. It provides us the capability to build the skeleton model
and track the nodes. With this information, we will examine the
trajectory of the nodes and see if we can match the characteristic
to those of 10 different crime categories.

First we need to understand the information of the input that



Fig. 6: Ex:

Fig. 7: Ex: anomaly score with corresponding time in ms that are
above the threshold

going into the classifier.
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The input videos are 30 frames/sec and for each frame and
we want to analyze the skeleton nodes inside. We have set place-
holders for a maximum of 10 people. In other words, a maximum
of 10 skeletons could be detected simultaneously and their X-Y
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positions could be traced. As previously mentioned, each skeleton
has 18 nodes and the detection of the skeleton is done using the
human-action recognition model. In the next paragraph, we will
explain about the sliding window method which is an algorithm for
training our classifier model. However, for the sake of explanation
of the input vector to the classifier, the size of the window is 60
frames. Therefore, the input vector will have a dimension of 60
frame x 10 people x 18 nodes x 2 X-Y position values.

Now we have understanding of the input, let’s see how the
algorithm works to process the input.

We came up with a “sliding window” method for the process-
ing of the input data. The window is divided into 60 slots and each
slot could contain the skeleton information within each frame. We
process the video by sliding the video frame by frame. Something
important to note is that first frame of the video will be allocated
to the last slot in the window and will be filled consecutively by
sliding to the right. Once the window is full, we use First in First
Out (FIFO) approach to continue processing the data.
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Fig. 9: Classifier Implementation Flow

Here are the details for the layers used in training the classifier.
The classifier consists of 4 Fully Connected (FC) layers. Ist layer:
21600 — 1020, 2nd layer: 1020 — 510, 3rd layer: 510 — 50, and
4th layer: 50 — 10. The activation function is Rectified Linear
Unit (ReLu). The loss algorithm used is Cross Entropy Loss.
The optimization algorithm used is Stochastic Gradient Descent
(SGD).

As you can see the dimension of the last layer of FC is 10. This
is the 10 categories of crime we are classifying. When we input a
crime scene to the classifier, it produces a percentage distribution
of how this input video is likely to fall under each category. We
choose the category with highest percentage and display that as
the final result.

For the training, we used the UCF-Crime dataset and utilized
80% of the dataset as training set and 20% as the test set.

Robbery Robbery Robbery

Robbery Robbery

Fig. 10: Output of the crime labeller. A scene acted for robbery
and classification of robbery as its output



4 RESULTS
4.1 Accuracy of the Anomaly Detector

Anomaly Detector detects whether an anomaly has occurred or
not. Although Anomaly Detector outputs anomaly score between 0
to 1 at different time segments, we will set a threshold to determine
the standard of anomaly. If the score passes the threshold, it is
considered as an anomaly and the relevant data will be passed on
to the classifier. For our project, we have determined the threshold
to be 0.2.

Therefore, essentially we could think of the Anomaly detection
as a binary classification model as we are trying to distinguish
between anomalous and normal time frames. To measure the
accuracy of such model, we need to look at Receiver Operating
Characteristics (ROC) and Area under the curve(AUC) [17].
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Fig. 11: tpr vs fpr. The orange cureve is the ROC. AUC is the
area under the ROC. The higher the AUC, the better it is for the
anomaly detector to correctly produce anomaly score at different
time frames. In this plot, AUC is 80%.
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Fig. 12: AUC of the Anomaly Detector is around 80%.

4.2 Accuracy of the Crime Classifier

The accuracies are different for each category and it varies from
31.7% (Shooting) to 87.5% (Arson). The reason for the variation
in accuracy for each category could be related to the number of
samples we have for each category, as having greater number of
samples is more likely to bring higher accuracy.

However, there seem something strange in the number of
samples. How could Arson have 87.5% accuracy while it has one
of the fewest number of samples? This is because we have utilized
data augmentation to account for the lack of samples for some of
the categories.
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Data augmentation was implemented for the first 5 categories:
(1) Abuse (2) Arson (3) Assault (4) Shooting (5) Vandalism. To
apply up-sampling for the data, we have made small random
shifts to the skeleton nodes. The movements do not deviate much
from the original trajectory of the skeleton nodes but could aid
in bringing in more data. This is also what makes our classifier
unique.

5 DiscussIiON
5.1 Imperfection

There exist imperfections in the crime analysis model. Sometimes
the anomaly detector is not able to detect any anomalies given an
anomalous video and crime classifier gives wrong classification for
the labelled input. Here are some of the examples of imperfections
and explanation for the causes.

5.1.1 Imperfection in Anomaly Detector

Left is an adult stepping on the child. Right is a scene where
a person is hitting the dog with a stick. Both are videos in the
category of Abuse. Even though the act of crime is evident from
the video, the anomaly score falls below 0.2 and stays very close to
0.0, which means perfect anomaly. Obviously, this is an inaccurate
score.

5.1.2 Imperfection in Crime Classifier

As shown in the previous result section, there are inaccuracies
in the crime classifier. For instance, we have acted a scene for
robbery, however, we have gotten burglary as the result. This could
show the challenging aspect of the crime classification. Because
many of the crimes share similarities, there are no absolute action
or movement trajectory to define a class. For example, fighting,
abuse, and assault could all involve punching and kicking. It is
difficult for the classifier to be very accurate in those categories.

Another problem that arises in classification is overlap of
multiple criminal actions. Let’s say the main crime happening at
the scene is arson. Imagine people fighting during an argument
and suddenly a person decides to commit arson. Overall, the main
crime would be arson but the classifier might focus on the fighting
scene and output fighting as the final outcome.

5.2 Improvement

Anomaly Detector — The Anomaly Detector uses C3D feature
extractor for extracting visual data from the video. There are a
few alternatives to C3D feature extractor. I3D [18] and MFNET
[19] feature extractor are also gaining popularity. Trying the
alternatives may bring up the accuracy in detecting anomalies.

Crime Classifier — (1) Train the model with higher number of
data samples. With increase in the number of data samples, the
model has more data to analyze; therefore, increasing the chance
of better classification. In our classifier, we saw that there were
uneven number of samples for each category. Although we have
used data augmentation for up-sampling [20] purposes, it would
be much better to have greater and even number of samples for
each category.

(2) Improve the detection of the trajectory of the movements is
by using relative position of the skeleton nodes rather than tracking
the absolute. We have been tracking how each of the nodes been
moving around individually, however, it might give better results
when we see how node positions change relative to a reference
point.
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Fig. 17: Failed case of the crime labeller. A scene acted for robbery
but getting other classes - fighting, shooting, shoplifting, as its
result

(3) Apply multi-labelling instead of single label. The crime
analysis model was designed to list the probability for each

multiple labels to a given video to better describe all the actions
that are taking place. For example, we can say “video contains
fighting, assault and arson” for better analyzing the crime scene.

(4) Use larger network for skeleton model to improve the
accuracy and stability. Now we are using trtpose of size 256.
It’s backbone densenet121 [21] of 256x256 epoch 160. We could
increase the size.

6 CONCLUSION

The purpose of the Crime Analysis model is to identify anomalies
in the surveillance videos and provide a classification to the crime
taking place during the anomalous time periods. The output of
the crime analysis model is one of the following crime types: (1)
Abuse (2) Arson (3) Assault (4) Burglary (5) Fighting (6) Robbery
(7) Shooting (8) Shoplifting (9) Stealing (10) Vandalism

The UCF-Crime dataset was used to resemble the real life
crime scenes as much as possible. We have utilized the pre-
exisiting anomaly detector to identify the abnormal and normal
time frames and primarily focus on the abnormal time frames.
The classifier utilizes human-action recognition model to identify
the skeleton information of the people involved in the crime and
analyzes the crime type based on the trajectory of the skeleton
nodes. Sliding window of size 60 frames was used to analyze the
skeleton movement. Due to unevenness in the sample data, we
have utilized data augmentation for up-sampling.
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